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SHORT COMMUNICATIONS

To fit a plane to a set of points by least squares. By D. M. Brow, Department of Biology, Massachu-

setts Institute of Technology, Cambridge, Mass., U.S.A.

(Received 6 September 1959)

A correct solution is offered to the least-squares plane
problem by Schomaker, Waser, Marsh & Bergman (1959)
(SWMB), in which the whole calculation is carried through
in crystal lattice coordinates. This may cause a more
simple and direct method of solution, attained by working
in Cartesian coordinates, to be overlooked. In Cartesian
coordinates, as SWMB mention, g is the unit matrix.
The secular equation |A — Ag|=0 is then readily solved
without calculation of an adjoint matrix. It may be ex-
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Here A%=Zwwx;—T;z;Zw as in SWMB, but in
Cartesian coordinates*; i=1, 2, 3; j and k are obtained
by cyclic permutation of ¢. The cubic equation (1) is
accurate, but tedious to solve directly. Since for atoms
near a plane the desired solution for 4 is small, an ap-
proximation to A may be found and refined, for example,
by the Newtonian method. For puckered rings the
approximate solution,

Ay =[—B~ (B2 — 4ay)}]/2 (2)

is usually accurate to about 1%, while for ‘good’ planes
it normally suffices to calculate

doy=—vIB - 3)

In either case it is important to check the effect of
neglected terms of (1) and to refine the solution if
necessary.

When 1 is known, values of um;, where u is an un-
determined multiplier, can be calculated from any two
of SWMB’s equations (7), the third being used as a check.
One choice would be
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Since Zm? =1, the m; can now be calculated.

No matrix manipulation is needed; the calculation is
simplified ; and the solution refines rapidly to the correct
solution for A without a special rule being needed.t

* Schomaker, Waser & Marsh, in a personal communication,
have remarked that the equation {A — Ag|=0 may be written
|g~*A — 14| =0 where 1 represents the unit matrix. In this way
an expansion in the form (1) may be made in any coordinate
system. The matrix g—'A is, in general, only symmetric in
the case of an orthogonal coordinate system, so that further
terms would be required in the coefficients «, 8, y. Thus,
Cartesian coordinates usually offer the most convenient method
for the practical solution of the secular equation.

1 This is obvious in the practical case of a reasonably
planar distribution. It is, moreover, true in general. Since A

In Cartesian coordinates the m; are direction cosines of
the plane normal, so that angular relationships are
immediately accessible. These advantages are attained
at the cost of transforming to Cartesian coordinates.

Table 1. Numerical example of least-square plane

Unit weights. Data in italics, results in bold-face.
All lengths in A.

Atom ; z, g D
1 0.1860 4.9741 4.4804 0-0030
2 0.0697 6.1712 3.8151 0-0034
3 0.0994 7.3637 4.5212 —0-0048
4 0.2618 7.3200 5.9058 0-0000
5 0.3883 6.1238 6.6023 0-0062
6 0,3302 4.9323 5.8446 —0-0079
Sum 1-3354 36-8851 311694 0-0001
Mean 0:22257 6-14752 5-19490
A 0-080467 —0-199234 0:651103
—0-199234 5-708601 —0-003002
0-651103 —0-003002 5-776348
o B 4
0-463638 2-653456
~11 —33-899871 4 0-000779
—0-299293
—33-436233 —0-000001
- 2-420076
0-004865

Ap)y=146 x 10~4: corrections negligible.

pm; 3-7162 0-1295 —0-4188
mg 0-9931 0-0346 —0-1119
d —0-1476

In Table 1 are reproduced all the steps in the calculation
of the mean plane of the benzene ring of phenyl cyclo-
butenedione. The data are taken from SWMB and
transformed to Cartesian coordinates so that the z, and z,
axes coincide with the crystal axes !, x%.

Thanks are due to Drs Waser, Marsh and Schomaker
for their comments on the original draft of this note.
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is a sum of squares, all solutions of (1) must be positive,
and since A is a symmetric matrix all three solutions are real.
The requircd solution is, of course, the least of these. If we
think of the cubic function (1) plotted as a function of 4,
it is clear that (2) represents a solution provided by a parabola
which approximates to the cubic at small A. The form of (2)
gives the smaller of the two (necessarily positive) solutions.
y must always be negative (since (3) is a solution obtained
from the straight line tangent to the cubic at A=0), so that
(f%2—4o0y) is always positive and a real solution to (2) exists.
Since, at the solution of (2), the (negative) slope of the cubic
must always be steeper than that of the quadratic, refinement
by the Newtonian method will always lead to the smallest
solution.



